Sobel算子

如果出现负数则默认为0

image-20200510094647103

img = cv2.imread('data/pie.png',cv2.IMREAD_GRAYSCALE)
cv2.imshow("img",img)
cv2.waitKey()
cv2.destroyAllWindows()

image-20200510094742879

dst = cv2.Sobel(src, ddepth, dx, dy, ksize)

  • ddepth:图像的深度
  • dx和dy分别表示水平和竖直方向
  • ksize是Sobel算子的大小
#定义显示函数
def cv_show(img,name):
    cv2.imshow(name,img)
    cv2.waitKey()
    cv2.destroyAllWindows()
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
cv_show(sobelx,'sobelx')

image-20200510094858534

白到黑是正数,黑到白就是负数了,所有的负数会被截断成0,所以要取绝对值

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)
cv_show(sobelx,'sobelx')

image-20200510095135197

#倒过来
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobely = cv2.convertScaleAbs(sobely)  
cv_show(sobely,'sobely')

image-20200510095151079

#分别计算x和y,再求和
sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0)
cv_show(sobelxy,'sobelxy')

image-20200510095311555

不建议直接计算

sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
sobelxy = cv2.convertScaleAbs(sobelxy) 
cv_show(sobelxy,'sobelxy')

image-20200510095343835

根据梯度求边缘

img = cv2.imread('data/lena.jpg',cv2.IMREAD_GRAYSCALE)
cv_show(img,'img')

image-20200510095536589

img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobely = cv2.convertScaleAbs(sobely)
sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0)
cv_show(sobelxy,'sobelxy')

image-20200510095619112

Scharr算子

对边界更敏感

image-20200510095731954

laplacian算子

特别敏感,对噪声点也很敏感

image-20200510095816174

#不同算子的差异
img = cv2.imread('data/lena.jpg',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)   
sobely = cv2.convertScaleAbs(sobely)  
sobelxy =  cv2.addWeighted(sobelx,0.5,sobely,0.5,0)  

scharrx = cv2.Scharr(img,cv2.CV_64F,1,0)
scharry = cv2.Scharr(img,cv2.CV_64F,0,1)
scharrx = cv2.convertScaleAbs(scharrx)   
scharry = cv2.convertScaleAbs(scharry)  
scharrxy =  cv2.addWeighted(scharrx,0.5,scharry,0.5,0) 

laplacian = cv2.Laplacian(img,cv2.CV_64F)
laplacian = cv2.convertScaleAbs(laplacian)   

res = np.hstack((sobelxy,scharrxy,laplacian))
cv_show(res,'res')

image-20200510095927085

Canny边缘检测
    1. 使用高斯滤波器,以平滑图像,滤除噪声。
    1. 计算图像中每个像素点的梯度强度和方向。
    1. 应用非极大值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应。
    1. 应用双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。
    1. 通过抑制孤立的弱边缘最终完成边缘检测。

1:高斯滤波器

image-20200510101632500

2:梯度和方向

image-20200510101524474

image-20200510101548845

3:非极大值抑制

image-20200510101717131

image-20200510101740158

4:双阈值检测

image-20200510101833328

img=cv2.imread("data/lena.jpg",cv2.IMREAD_GRAYSCALE)

v1=cv2.Canny(img,80,150)
v2=cv2.Canny(img,50,100)

res = np.hstack((v1,v2))
cv_show(res,'res')

image-20200510101919671

img=cv2.imread("data/car.png",cv2.IMREAD_GRAYSCALE)

v1=cv2.Canny(img,120,250)
v2=cv2.Canny(img,50,100)

res = np.hstack((v1,v2))
cv_show(res,'res')

image-20200510101936310

图像金字塔
  • 高斯金字塔
  • 拉普拉斯金字塔

image-20200510104353663

高斯金字塔:向下采样方法(缩小)

image-20200510104506006

高斯金字塔:向上采样方法(放大)

image-20200510104557018

img=cv2.imread("data/AM.png")
cv_show(img,'img')
print (img.shape)
#打印结果(442, 340, 3)

image-20200510104639598

up=cv2.pyrUp(img)
cv_show(up,'up')
print (up.shape)
#打印结果(884, 680, 3)

image-20200510104709579

down=cv2.pyrDown(img)
cv_show(down,'down')
print (down.shape)
#打印结果(221, 170, 3)

image-20200510104735582

up2=cv2.pyrUp(up)
cv_show(up2,'up2')
print (up2.shape)
#打印结果(1768, 1360, 3)

图片太大不展示了

up=cv2.pyrUp(img)
up_down=cv2.pyrDown(up)
cv_show(up_down,'up_down')

image-20200510105006140

cv_show(np.hstack((img,up_down)),'up_down')

image-20200510105019169

up=cv2.pyrUp(img)
up_down=cv2.pyrDown(up)
cv_show(img-up_down,'img-up_down')

image-20200510105104395

拉普拉斯金字塔

image-20200510105156702

down=cv2.pyrDown(img)
down_up=cv2.pyrUp(down)
l_1=img-down_up
cv_show(l_1,'l_1')

image-20200510105211964

图像轮廓

cv2.findContours(img,mode,method)

mode:轮廓检索模式

  • RETR_EXTERNAL :只检索最外面的轮廓;
  • RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;
  • RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;
  • RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次;

method:轮廓逼近方法

  • CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。
  • CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。

为了更高的准确率,使用二值图像。

image-20200510110831348

img = cv2.imread('data/contours.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
cv_show(thresh,'thresh')

image-20200510110849987

binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cv_show(img,'img')
#传入绘制图像,轮廓,轮廓索引,颜色模式,线条厚度
# 注意需要copy,要不原图会变。。。
draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, -1, (0, 0, 255), 2)
cv_show(res,'res')

image-20200510111028609

draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, 0, (0, 0, 255), 2)
cv_show(res,'res')

image-20200510111054729

轮廓特征

cnt = contours[0]
#面积
print(cv2.contourArea(cnt))
#周长,True表示闭合的
print(cv2.arcLength(cnt,True))

轮廓近似

img = cv2.imread('data/contours2.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]

draw_img = img.copy()
res = cv2.drawContours(draw_img, [cnt], -1, (0, 0, 255), 2)
cv_show(res,'res')

image-20200510111255618

epsilon = 0.15*cv2.arcLength(cnt,True) 
approx = cv2.approxPolyDP(cnt,epsilon,True)

draw_img = img.copy()
res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)
cv_show(res,'res')

image-20200510111346723

边界矩形

img = cv2.imread('data/contours.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]

x,y,w,h = cv2.boundingRect(cnt)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show(img,'img')

image-20200510111434698

area = cv2.contourArea(cnt)
x, y, w, h = cv2.boundingRect(cnt)
rect_area = w * h
extent = float(area) / rect_area
print ('轮廓面积与边界矩形比',extent)
轮廓面积与边界矩形比 0.5154317244724715

外接圆

(x,y),radius = cv2.minEnclosingCircle(cnt) 
center = (int(x),int(y)) 
radius = int(radius) 
img = cv2.circle(img,center,radius,(0,255,0),2)
cv_show(img,'img')

image-20200510111552398

傅里叶变换

我们生活在时间的世界中,早上7:00起来吃早饭,8:00去挤地铁,9:00开始上班。。。以时间为参照就是时域分析。

但是在频域中一切都是静止的!

https://zhuanlan.zhihu.com/p/19763358

傅里叶变换的作用

  • 高频:变化剧烈的灰度分量,例如边界
  • 低频:变化缓慢的灰度分量,例如一片大海
滤波
  • 低通滤波器:只保留低频,会使得图像模糊

  • 高通滤波器:只保留高频,会使得图像细节增强

  • opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32 格式。

  • 得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,可以通过shift变换来实现。

  • cv2.dft()返回的结果是双通道的(实部,虚部),通常还需要转换成图像格式才能展示(0,255)。

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('data/lena.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
# 得到灰度图能表示的形式
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

image-20200510111844720

img = cv2.imread('data/lena.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置

# 高通滤波
mask = np.ones((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 0

# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()    

image-20200510111927573